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Abstract
Unsupervised domain adaptation (UDA) aims to
predict unlabeled data from target domain with ac-
cess to labeled data from the source domain. In this
work, we propose a novel framework called SIDA
(Surrogate Mutual Information Maximization Do-
main Adaptation) with strong theoretical guaran-
tees. To be specific, SIDA implements adaptation
by maximizing mutual information (MI) between
features. In the framework, a surrogate joint distri-
bution models the underlying joint distribution of
the unlabeled target domain. Our theoretical anal-
ysis validates SIDA by bounding the expected risk
on target domain with MI and surrogate distribution
bias. Experiments show that our approach is com-
parable with state-of-the-art unsupervised adapta-
tion methods on standard UDA tasks.

1 Introduction
Inspired by human beings’ ability to transfer knowledge
across domains and tasks, transfer learning is proposed to
leverage knowledge from source domain and task to improve
performance on target domain and task. However, in prac-
tice, labeled data are often limited on target domains. To ad-
dress such situation, unsupervised domain adaptation (UDA),
a category of transfer learning methods [Long et al., 2015;
Long et al., 2017b; Ganin et al., 2016], attempts to enhance
knowledge transfer from labeled source domain to target do-
main by leveraging unlabeled target domain data.

Most previous work is based on the data shift assump-
tion, i.e., the label space maintains the same across domains,
but the data distribution conditioned on labels varies. Under
this hypothesis, domain alignment and class-level method are
used to improve generalization across source and target fea-
ture distributions. Domain alignment minimizes the discrep-
ancy between the feature distributions of two domains [Long
et al., 2015; Ganin et al., 2016; Long et al., 2017b], while
class-level methods work on conditional distributions. Con-
ditional alignment aligns conditional distributions and use
pseudo-labels to estimate conditional distribution on target
domain [Long et al., 2018; Li et al., 2020c; Chen et al.,
2020a]. However, the conditional distributions from different
categories tend to mix together, leading to performance drop.

Contrastive learning based methods resolve this issue by dis-
criminating features from different classes [Luo et al., 2020],
but still face the problem of pseudo-label precision. In addi-
tion, most of the class-level methods lack solid theoretical ex-
planations for the relationship between cross domain general-
ization and their objectives. Some works [Chen et al., 2019;
Xie et al., 2018] yield some intuition for conditional align-
ment and contrastive learning, but the relation between their
training objectives and cross-domain error remains unclear.

In this work, we aim to address the generalization problem
in domain adaptation from an information theory perspec-
tive. In failed case of domain adaptation, as shown in Figure
1, features from the same class do not represent each other
well and this inspires us to use mutual information to reduce
this confusion. Our motivation is to find more representative
features for both domains by maximizing mutual information
between features of the same class (on both source and target
domains). Therefore, if our classifier can accurately predict
features on source domain, then it would also function well
on target domains where features share enough information
with the source features.

Based on the above motivation, we propose Surrogate
Information Domain Adaptation (SIDA), a general domain
adaptation framework with strong theoretical guarantees.
SIDA achieves adaptation by maximizing the mutual infor-
mation (MI) between features within the same class, which
improves the generalization of the model to the target do-
main. Furthermore, a surrogate distribution is constructed
to approximate the unlabeled target distribution, which im-
proves flexibility for selecting data and assists MI estimation.
Also, our theoretical analyses directly establish a bound be-
tween MI of features and target expected risk, giving a proof
that our model can improve generalization across domain.

Our novelties and contributions are summarized as follows:

• We propose a novel framework to achieve domain adap-
tation by maximizing surrogate MI.

• We establish an expected risk upper bound based on fea-
ture MI and surrogate distribution bias for UDA. This
provides theoretical guarantee for our framework.

• Experiment results on three challenging benchmarks
demonstrate that our method performs favorably against
state-of-art class-level UDA models.
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Figure 1: Our motivation is that higher intra-class feature mutual in-
formation implies better generalization ability across domain. As
shown, unsuccessful domain adaptation implies lower intra-class
feature mutual information. This is reflected in the fact that fea-
tures from the same class do not represent each other well because
of confusion with features from other classes.

2 Related Work
Domain Adaptation Prior works are based on two major
assumptions: (1) the label shift hypothesis, where the label
distribution changes, and (2) a more common data shift hy-
pothesis where we only study the shift in conditional distri-
bution under the premise that the label distribution is fixed.
Our work focuses on the data shift hypothesis, and previous
work following this line can be divided into two major cate-
gories: domain alignment methods which align marginal dis-
tributions, and class-level methods addressing the alignment
of conditional distributions.

Domain alignment methods minimize the difference be-
tween feature distributions of source and target domains with
various metrics, e.g. maximum mean discrepancy (MMD)
[Long et al., 2015], JS divergence [Ganin et al., 2016] es-
timated by adversarial discriminator, Wasserstein metric and
others. Maximum Mean Discrepancy (MMD) is applied to
measure the discrepancy in marginal distributions [Long et
al., 2015; Long et al., 2017b]. Adversarial domain adapta-
tion plays a mini-max game to learn domain-invariant fea-
tures [Ganin et al., 2016; Li et al., 2020b].

Class-level methods align the conditional distribution
based on pseudo-labels [Li et al., 2020c; Chen et al., 2020a;
Luo et al., 2020; Li et al., 2020a; Tang and Jia, 2020; Xu et
al., 2019]. Conditional alignment methods [Xie et al., 2018;
Long et al., 2018] minimize the discrepancy between condi-
tional distributions. In class-level methods, conditional dis-
tributions are assigned by pseudo-labels. The accuracy of
pseudo-labels greatly influences performance and later works
construct more accurate pseudo-labels [Chen et al., 2020a].
However, the major problem with this method is that error in

conditional alignment leads to distribution overlap of features
from different class, resulting in low discriminability on tar-
get domain. Contrastive learning addresses this problem by
maximizing the discrepancy between different classes [Luo
et al., 2020; Li et al., 2020a]. However, the performance of
contrastive learning also relies on pseudo-labeling.

In addition, previous class-level works provide weak theo-
retical support for cross-domain generalization. Prior works
mainly focus on domain alignment [Ben-David et al., 2007;
Redko et al., 2020]. Some works [Chen et al., 2019;
Xie et al., 2018] consider optimal classification on both do-
mains, and yield some intuitive explanation for conditional
alignment and contrastive learning, but the relation between
their objective function and theoretical cross-domain error re-
mains unclear.

Information Maximization Principle Recently, mu-
tual information maximization (InfoMax) for representation
learning has attracted lots of attention [Chen et al., 2020b;
Hjelm et al., 2018; Khosla et al., 2020]. The intuition is that
two features belonging to different classes should be discrim-
inable while features of the same class should resemble each
other. The InfoMax principle provides a general framework
for learning informative representations, and provides consis-
tent boosts in various downstream tasks.

We facilitate domain adaptation with MI maximization, i.e.
maximizing the MI between features of the same class. Some
works solve domain adaptation problem via information the-
oretical methods [Thota and Leontidis, 2021; Chen and Liu,
2020; Park et al., 2020], which maximize MI using InfoNCE
estimation [Poole et al., 2019]. As far as we know, we are
the first to provide theoretical guarantee for the target do-
main expected risk based on MI. Compared with InfoNCE,
the variational lower bound of MI we use is tighter [Poole et
al., 2019]. We also construct a surrogate distribution as a sub-
stitute for unlabeled target domain, which is more suitable for
MI estimation.

3 Preliminaries
3.1 Notations and Problem Setting
Let X be the data space and Y be the label space. In
UDA, there is a source distribution PS(X,Y ) and a target
distribution PT (X,Y ) on X × Y . Note that distributions
are also referred to as domains in UDA. Our work is based
on the data shift hypothesis, which assumes PS(X,Y ) and
PT (X,Y ) satisfy the following properties: PT (Y ) = PS(Y )
and PT (X|Y ) 6= PS(X|Y ) .

In our work, we focus on classification tasks. Under
this setting, an algorithm has access to nS labeled sam-
ples {(xiS , yiS)}nS

i=1 ∼ PS(X,Y ) and nT unlabeled samples
{(xiT )}nT

i=1 ∼ PT (X), and outputs a hypothesis composed
of an encoder G and a classifier F . Let Z be the feature
space. The encoder maps data to feature space, denoted by
G : X → Z . Then the classifier maps the feature to a corre-
sponding class, F : Z → Y .

For brevity, given encoder G and data-label distribution
P (X,Y ), denote the distribution of G-encoded feature and
label by PG, i.e. PG(z, y) = P (x = G−1(z), y).



Figure 2: Overview of SIDA framework for training. Only encoder and classifier are involved in inference. The dashed arrow shows the path
of the gradient backpropagation.

Let F be a hypothesis, and P be the distribution of feature
and label. The expected risk of a F w.r.t. P is denoted as

εP (F ) , EP (z)|δF (z) − P (y|z)|1, (1)
where δF (z)(y) equals to 1 if y = F (z) and equals 0 in

else cases. Our objective is to minimize the expected risk of
F on target feature distribution encoded by G,

min
G,F

εPG
T

(F ). (2)

4 Methodology
4.1 Overview
In UDA task, the model needs to generalize across different
domains with varying distributions; thus the encoder needs
to extract appropriate features that are transferable across do-
mains. The challenges of class-level adaptation are two folds:
learning transferable features, and modeling PGT (Z|Y ) with-
out label information.

To solve the first problem, we use MI based methods. Fol-
lowing the InfoMax principle, we maximize the mutual infor-
mation between features from the same class on the target and
source mixture distribution. This encourages the features of
the source domain to carry more information about the fea-
tures of the same class in target domain, and thus provides
opportunities for transferring classifier across domains.

As for the second challenge, we first revisit the data shift
hypothesis. The distribution of labels P (Y ) remains indepen-
dent of domains; therefore the key is to model the conditional
distribution P (Z|Y ) on the target domain. However, model-
ing P (Z|Y ) is intractable, since labels on the target domain
are inaccessible. To tackle this problem, we model a surro-
gate distribution Q(Z|Y ) instead.

We introduce the goal of maximizing MI in section 4.2,
and theoretically explain how MI affects domain adaptation
risk. In Section 4.3, we will introduce the model in detail, in-
cluding the variational estimation of MI, the modeling of the
surrogate distribution, and the optimization of the loss func-
tion of the model.

4.2 Mutual Information Maximization
MI measures the degree to which two variables can predict
each other. Inspired by InfoMax principle [Hjelm et al.,
2018], we maximize the MI between the features within the
same class. It encourages features from different classes to
be discriminable from each other.

We maximize MI between features on both source and tar-
get domain, regardless of which domain they come from. So
we introduce mixture distribution S + T of both domain,
which is

PS+T (x, y) ,
1

2
(PS(x, y) + PT (x, y)). (3)

Note that because PS(y) = PT (y) = PS+T (y),
PS+T (x|y) = 1

2PS(x | y) + 1
2PT (x | y). Define the dis-

tribution of features from the same class as

PG
S+T (z1, z2|y) , PG

S+T (z1|y)PG
S+T (z2|y),

PG
S+T (z1, z2) =

∑
y

PG
S+T (y)P

G
S+T (z1, z2|y). (4)

which means the feature z1 and z2 are sampled indepen-
dently from the conditional distribution of the same class,
with equal probability from source domain and target domain.

MI between features is maximized within the mixture dis-
tribution, as formalized bellow:

argmax
G
IGS+T (Z1;Z2)

=

∫
PG
S+T (z1, z2) log

PG
S+T (z1, z2)

PG
S+T (z1)PG

S+T (z2)
dz1dz2.

(5)

However, due to the lack of target domain labels, PGS+T is
hard to model and thereby it is infeasible to estimate IGS+T di-
rectly. To address this problem, we propose a surrogate joint
distribution Q(Z, Y ) as the substitute for target domain PGT .
Then the mixture distribution becomes PGS+Q = 1

2 (PGS +Q),
and the objective becomes maximizing IGS+Q(Z1;Z2). The
construction and optimization of the surrogate joint distribu-
tion is explained in Section 4.3.

Theoretical Motivation for MI Maximization
We use theoretical bound to demonstrate the motivation for
using MI maximization. Our theoretical results prove that
minimizing the expected risk on the target domain can be nat-
urally transformed into MI maximization and expected risk
minimization on the source domain, which explains why MI
maximization is pivotal to our framework. The proofs are in
appendix.

Definition 1 (H∆H-Divergence). Let F1 ∈ H, F2 ∈ H
be two hypotheses in hypothesis space H : Z → Y .



Define εP (F1, F2) as the disagreement between hypothe-
ses F1, F2 w.r.t. distribution P on Z , εP (F1, F2) ,
Ez∼P

∣∣δF1(z) − δF2(z)

∣∣. H∆H-divergence, which is the dis-
crepancy of two distributions P1, P2 w.r.t. any hypothesis
F1 − F2 where F1, F2 ∈ H, is defined as dH∆H(P1, P2) ,
2 supF1,F2∈H |εP1

(F1, F2)− εP2
(F1, F2)|.

Theorem 1 (Bound of Target Domain expected risk). The ex-
pected risk on target domain can be upper-bounded by the
negative MI between features, and H∆H -divergence be-
tween features of two domains:

εPG
T
(F ) ≤ εPG

S
(F )− 4IGS+T (Z1;Z2)

+
1

2
dH∆H(P

G
S (Z), PG

T (Z)) + 4H(Y ).
(6)

The proof is in appendix. We give an explanation of the
conditions for the upper bound to be equal. IGS+T (Z1;Z2)

is a lower bound of IGS+T (Z;Y ), and it measures how much
uncertainty of Y is reduced by knowing the feature, and it’s
equal to H(Y ) if and only if PGS+T (Y |Z) is deterministic,
i.e., PGS+T (Y |Z) is δ distribution, which means PGS (Y |Z) =

PGT (Y |Z) = δY (Z). Thus if the H∆H -divergence is zero,
i.e., PGS (Z) = PGT (Z), then it’s ensured that PGS (Z, Y ) =
PGT (Z, Y ), and εPG

T
(F ) = εPG

S
(F ).

This upper bound decomposes the cross-domain general-
ization error into the divergence of feature marginal distribu-
tion and MI of features. It emphasizes that in addition to the
divergence of the feature marginal distributions, only a MI
term is enough for knowledge transfer across domains.

In this work, we minimize the expected risk on the source
domain and maximize MI, for minimizing the upper bound of
expected risk on target domain. Due to the lack of labels on
target domain, we estimate MI based on surrogate distribution
Q. The expected risk upper bound based on surrogate MI is
further derived as follows.
Definition 2 (L1-distance). Define L1-distance of P1, P2 as
d1 (P1, P2) , 2 supB∈B |PrP1

[B]− PrP2
[B]| where B is the

set of measurable subsets under P1 and P2.
Theorem 2 (Bound Estimation with Surrogate Distribution).
Let B , d1(PGT (Z), Q(Z)) + εPG

T
(Q(Y |Z)) be the bias

of surrogate distribution Q w.r.t target distribution. The ex-
pected risk on target domain can be upper-bounded by the
negative surrogate MI between features, H∆H -divergence
between source and target domain, and additional bias of sur-
rogate domain:

εPG
T
(F ) ≤ εPG

S
(F )− 4IGS+Q(Z1;Z2) +B

+
1

2
dH∆H(P

G
S (Z), PG

T (Z)) + 4H(Y ).
(7)

The proof is in appendix. This theorem supports the fea-
sibility of domain adaptation via maximizing surrogate MI
IGS+Q(Z1;Z2). The bias of surrogate distribution is expressed
in terms d1(PGT (Z), Q(Z)) + εPG

T
(Q(Y |Z)), where the first

term is the distance between the surrogate and target feature
marginal distribution, and the second term is the risk of con-
ditional label surrogate distribution. To minimize the upper
bound, the bias of the surrogate distribution should be small.

Bias equal to zero if and only if surrogate feature distribu-
tion and conditional label distribution are the same as target
distribution, i.e., PGT = Q, where surrogate distribution does
not introduce errors.

4.3 SIDA Framework
We employ MI maximization and surrogate distribution in
our SIDA framework, as shown in Figure 2. During training,
a surrogate distribution is first built from target and source
data via optimizing w.r.t. Laplacian and MI. Then a mix-
ture data distribution is created by encoding source data to
features and sampling target features from the surrogate dis-
tribution. The encoder is optimized by maximizing MI, and
minimizing classification error. The overall loss is:
Lmodel = LClassify+α1LMI+α2LAuxiliary+LLaplacian. (8)
We elaborate each module in the following sections, and in-

troduce the optimization of surrogate distribution in the last
sections.

Mutual Information Estimation
Several MI estimation and optimization methods are pro-
posed in deep learning [Poole et al., 2019]. In this work, we
use the following variational lower bound of MI as proposed
in [Nguyen et al., 2010]:

I(Z1;Z2) ≥EP (z1,z2)[f(z1, z2)]

− e−1EP (z1)[EP (z2)

[
ef(z1,z2)

]
],

(9)

where f is a score function in Z × Z → R.
The equality holds when ef(z1,z2)

EP (z1)e
f(z1,z2) = P (z1|z2)

P (z1) and

EP (z1)EP (z2)e
f(z1,z2) = e. The proof is in appendix. There-

fore maximizing MI can be transformed into maximizing its
lower bound, and the loss is:

LMI =− EPG
S+Q

(y)EPG
S+Q

(z1|y)EPG
S+Q

(z2|y)[f(z1, z2)]

+ e−1EPG
S+Q

(z1)[EPG
S+Q

(z2)

[
ef(z1,z2)

]
],

(10)

where f(z1, z2) is constructed as Tm2
m1

(|z1 − z2|2). Tm2
m1

is a
threshold function, i.e., Tm2

m1
(a) = max(m1,min(m2, a)).

Surrogate Distribution Construction
We decompose the surrogate distribution Q(Z, Y ) into two
factorsQ(Z, Y ) = Q(Y )Q(Z|Y ), and describe the construc-
tion of two factors individually.

According to the data shift assumption, PT (Y ) is similar
to PS(Y ), thus Q(Y ) should be similar to PS(Y ). However,
source distribution may suffer from the class imbalance prob-
lem, which will harm the performance on classes with fewer
data. A common solution to this problem is class-balanced
sampling, which samples data on each class uniformly. In this
work, for the balance across different classes, the marginal
distribution PS(Y ) andQ(Y ) are both considered as uniform
distribution.

As for the second term, the conditional surrogate distribu-
tion Q(Z|Y ) is constructed by weighted sampling method.
We need to construct the Q(Z|Y ) to calculate Eq. 10, which
takes the form of expectation, and only needs samples from
Q(Z|Y ) to estimate. Instead of explicitly modeling Q(Y |Z),
we use the ideas of importance sampling. For each class,
the surrogate conditional distribution Q(Z|yj) is constructed



by weighted sampling from target features. Thus Q(Z|Y ) is
a distribution on target features{G(xiT )}nT

i=1, and parameter-
ized by W ∈ RnT×nY , where nY is the number of labels:

Q(G(xiT )|yj) =Wij , s.t. Wij ∈ [0, 1],
∑
i

Wij = 1, ∀j. (11)

Compared with pseudo-labeling, our estimation method
has the following advantages: (1) The surrogate marginal dis-
tribution of feature Q(Z) =

∑
Y Q(Z|Y )P (Y ) is not fixed,

which enables us to select features more flexibly. (2)The con-
struction process of the surrogate distribution makes MI es-
timation I(Z1, Z2) more convenient. Our surrogate distribu-
tionQ(Z|Y ) provides weights so that weighted sampling can
be performed directly.

The challenge is to optimize the sampling probability
weightsWij so as to minimize the bias of the surrogate distri-
bution. We propose to optimize this distribution via Laplacian
regularization as well as MI, which is explained in details in
the following section.

Surrogate Distribution Loss
Inspired by semi-supervised learning, we expect that the sur-
rogate distribution is consistent with the clustering structure
of the feature distribution, based on the assumption that the
feature is well-structured and clustered according to class, re-
gardless of domains. We employ Laplacian regularization to
capture the manifold clustering structure of feature distribu-
tion.

Let A ∈ RnT×nT be the adjacent matrix of target features,
where the entry Aij measures how similar G(xiT ) and G(xjT )
are, and D = Diag(A1) is the degree matrix, i.e. Dii =∑
j Aij and Dij = 0,∀i 6= j. We construct A as K-nearest

graph on target features, and the Laplacian regularization of
W is defined as

LLaplacian = Tr(WTLW )

=
1

2

∑
k

∑
i,j

Aij(
Wik

Dii
− Wjk

Djj
)2,

(12)

where L is the normalized Laplacian matrix L = I −
D−

1
2AD−

1
2 . This regularization encourages Wik and Wjk

to be similar if feature G(xiT ) is similar to G(xjT ). It also
enables the conditional surrogate distribution to spread uni-
formly on a connected region.

Classification and Auxiliary Loss
The model is optimized in supervised manner on the source
domain. The classification loss is the standard cross-entropy
loss via class-balanced sampling.

LClassify = − 1

nY

∑
y

EPS(x|y) logP (F (G(x)) = y). (13)

And we use auxiliary classification loss on pseudo-labels
from the surrogate distribution, as the classifier will benefit
from label information of the surrogate distribution. We use
mean square error (MSE) for pseudo-labels, which is more
robust to noise than cross entropy loss.

LAuxiliary =
1

nY

∑
y

EQ(x|y)(1− P (F (G(x)) = y))2. (14)

Optimization of Surrogate Distribution
We optimize both LLaplacian and LMI w.r.t. W for a struc-
tured and informative surrogate distribution. At the begin-
ning of each epoch, W is initialized by K-means cluster-
ing and filtered by the distance to the clustering centers,
i.e. W̃i,j = 1µj nearest toG(xi)1d(G(xi),µj)<θ, where µj is the
j-th clustering center during clustering, and normalized as

Wi,j =
W̃i,j∑
i W̃i,j

.

To minimize two losses w.r.t W , the gradients are derived
analytically. The derivation is in appendix.

Based on the gradient of these two losses, we perform T-
step descent update ofW with learning rate η1 and η2 respec-
tively, and each step we project W back to the probability
simplex. See appendix for details.

5 Experiments
In this section, We evaluate the proposed method on three
public domain adaptation benchmarks, compared with recent
state-of-the-art UDA methods. We conduct extensive ablation
study to discuss our method.

5.1 Datasets
VisDA-2017 [Peng et al., 2017] is a challenging benchmark
for UDA with the domain shift from synthetic data to real
imagery. It contains 152,397 training images and 55,388 val-
idation images across 12 classes. Following the training and
testing protocol in [Long et al., 2017a], the model is trained
on labeled training and unlabeled validation set and tested on
the validation set.

Office-31 [Saenko et al., 2010] is a commonly used dataset
for UDA, where images are collected from three distinct
domains: Amazon (A), Webcam (W) and DSLR (D). The
dataset consists of 4,110 images belonging to 31 classes, and
is imbalanced across domains, with 2,817 images in A do-
main, 795 images in W domain, and 498 images in D domain.
Our method is evaluated on all six transfer tasks. We follow
the standard protocol for UDA [Long et al., 2017b] to use all
labeled source samples and all unlabeled target samples as the
training data.

Office-Home [Venkateswara et al., 2017] is another clas-
sical dataset with 15,500 images of 65 categories in office
and home settings, consisting of 4 domains including Artis-
tic images (A), Clip Art images (C), Product images (P) and
Real-World images (R). Following the common protocol, all
65 categories from the four domains are used for evaluation
of UDA, forming 12 transfer tasks.

5.2 Implementation details
For each transfer task, mean (±std) over 5 runs of the test
accuracy are reported. We use the ImageNet pre-trained
ResNet-50 [He et al., 2016] without final classifier layer as
the encoder network G for Office-31 and Office-Home, and
ResNet-101 for VisDA-2017. The details of experiments are
in appendix. The code is available at https://github.com/zhao-
ht/SIDA.

https://github.com/zhao-ht/SIDA
https://github.com/zhao-ht/SIDA


5.3 Baselines
We compare our approach with the state of the arts. Do-
main alignment methods include DAN [Long et al., 2015],
DANN [Ganin et al., 2016], JAN [Long et al., 2017b].
Class-level methods include conditional alignment methods
(CDAN [Long et al., 2018], DCAN [Li et al., 2020c], ALDA
[Chen et al., 2020a]), and contrastive methods (DRMEA
[Luo et al., 2020], ETD [Li et al., 2020a], DADA [Tang and
Jia, 2020], SAFN [Xu et al., 2019]). We only report available
results in each baseline. We use NA, DA, CA, CT to note no
adaptation method, domain alignment methods, conditional
alignment methods and contrastive methods respectively.

Type Methods Plane Bcycl Bus Car Horse Knife Mcyle Person Plant Sktbrd Train Truck Avg
NA ResNet-101 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
DA DAN 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1

DANN 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
CA CDAN 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9

ALDA 93.8 74.1 82.4 69.4 90.6 87.2 89.0 67.6 93.4 76.1 87.7 22.2 77.8
CT DRMEA 92.1 75.0 78.9 75.5 91.2 81.9 89.0 77.2 93.3 77.4 84.8 35.1 79.3

DADA 92.9 74.2 82.5 65.0 90.9 93.8 87.2 74.2 89.9 71.5 86.5 48.7 79.8
SAFN 93.6 61.3 84.1 70.6 94.1 79.0 91.8 79.6 89.9 55.6 89.0 24.4 76.1

Ours SIDA 95.4 83.1 77.1 64.6 94.5 97.2 88.7 78.4 93.8 89.9 85.2 59.4 84.0

Table 1: Accuracy (%) on VisDA-2017

Type Methods A→W D→W W→D A→D D→A W→A avg
NA ResNet-50 68.4±0.2 96.7±0.1 99.3±0.1 68.9±0.2 62.5±0.3 60.7±0.3 76.1

DA
DAN 80.5±0.4 97.1±0.2 99.6±0.1 78.6±0.2 63.6±0.3 62.8±0.2 80.4

DANN 82.0±0.4 96.9±0.2 99.1±0.1 79.7±0.4 68.2±0.4 67.4±0.5 82.2
JAN 85.4±0.3 97.4±0.2 99.8±0.2 84.7±0.3 68.6±0.3 70.0±0.4 84.3

CA
CDAN 94.1±0.1 98.6±0.1 100.0±0.0 92.9±0.2 71.0±0.3 69.3 ± 0.3 87.7
DCAN 95.0 97.5 100.0 92.6 77.2 74.9 89.5
ALDA 95.6±0.5 97.7±0.1 100.0±0.0 94.0±0.4 72.2±0.4 72.5±0.2 88.7

CT
ETD 92.1 100.0 100.0 88.0 71.0 67.8 86.2

DADA 92.3±0.1 99.2±0.1 100.0±0.0 93.9±0.2 74.4±0.1 74.2±0.1 89.0
SAFN 90.3 98.7 100.0 92.1 73.4 71.2 87.6

Ours SIDA 94.5±0.6 99.2±0.1 100.0±0.0 95.7±0.3 76.6±0.6 76.2±0.4 90.4

Table 2: Accuracy(%) on Office-31

Type Methods A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg
NA ResNet-50 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DA
DAN 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3

DANN 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
JAN 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3

CA
CDAN 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
DCAN 54.5 75.7 81.2 67.4 74.0 76.3 67.4 52.7 80.6 74.1 59.1 83.5 70.5
ALDA 53.7 70.1 76.4 60.2 72.6 71.5 56.8 51.9 77.1 70.2 56.3 82.1 66.6

CT
DRMEA 52.3 73.0 77.3 64.3 72.0 71.8 63.6 52.7 78.5 72.0 57.7 81.6 68.1

ETD 51.3 71.9 85.7 57.6 69.2 73.7 57.8 51.2 79.3 70.2 57.5 82.1 67.3
SAFN 54.4 73.3 77.9 65.2 71.5 73.2 63.6 52.6 78.2 72.3 58.0 82.1 68.5

Ours SIDA 57.2 79.1 81.7 67.1 74.5 77.3 67.2 53.9 82.5 71.4 58.7 83.3 71.2

Table 3: Accuracy (%) on Office-Home

5.4 Results and Comparative Analysis
In this section we will present our results and compare with
other methods for evaluation on three standard benchmarks
mentioned earlier. We report average classification accura-
cies with standard deviations. Results of other methods are
collected from original papers or the follow-up work. We
provide visualizations of the features learned by the model in
the appendix.

VisDA-2017 Table 1 summarizes our experimental results
on the challenging VisDA-2017 dataset. For fair comparison,
all methods listed here use ResNet-101 as the backbone net-
work. Note that SIDA outperforms baseline models with an
average accuracy of 84.0, surpassing the previous best result
reported by +4%.

Office-31 The unsupervised adaptation results on six
Office-31 transfer tasks based on ResNet-50 are reported in
Table 2. As the data reveals, the average accuracy of SIDA is
90.4, the best among all compared methods. It is noteworthy
that our proposed method substantially improves the classi-
fication accuracy on hard transfer tasks, e.g. W→A, A→D,
and D→A, where source and target data are not similar. Our
model also achieves comparable classification performance
on easy transfer tasks, e.g. D→W, W→D, and A→W. Our
improvements are mainly on hard settings.

Office-Home Results on Office-Home using ResNet-50
backbone are reported in Table 3. It can be observed that
SIDA exceeds all compared methods on most transfer tasks
with an average accuracy of 71.2. The performance reveals
the importance of maximizing MI between feature in difficult
domain-adaptation tasks which contain more categories.

In summary, our surrogate MI maximization approach
achieves competitive performance compared to traditional
alignment based methods and recent pseudo-label based
methods for UDA. It underlines the validity of using infor-
mation theory methods for UDA via MI maximization.

MI SD A→W A→D D→A W→A Avg
× × 90.25 ± 0.2 92.37 ± 0.1 74.21 ± 0.2 74.09 ± 0.1 82.7
×

√
92.08± 0.3 94.28±0.3 74.23±0.9 74.74± 0.8 83.8√

× 94.03± 0.1 95.28± 0.1 75.86± 0.4 75.72 ± 0.5 85.2√ √
94.52 ± 0.6 95.68 ± 0.1 76.62 ± 0.6 76.22 ± 0.4 85.8

Table 4: Ablation Study

5.5 Ablation Study
In this section, to evaluate how different components of our
work contribute to the final performance, we conduct abla-
tion study for SIDA on Office-31. We mainly focus on harder
transfer tasks, e.g. A→W , A→D, D→A and W→A. We in-
vestigate different combinations of two components:MI max-
imization and surrogate distribution (SD). Note that without
surrogate distribution, we use pseudo label computed by the
same method as surrogate distribution initialization to esti-
mate MI. The average classification accuracy on four tasks
are in Table 4.

From the results, we can observe that the model with MI
maximization outperforms the base model without the two
components by about 2.5% on average, which demonstrates
the effectiveness of the maximization strategy. The surro-
gate distribution also improves the average performance by
1.1% compared to base model, confirming that the surrogate
distribution improves the estimation quality of target domain
compared to pseudo label method. The combination of two
components yields the highest improvement.

6 Conclusion and Future Work
In this work, we introduce a novel framework of unsuper-
vised domain adaptation and provide theoretical analysis to
validate our optimization objectives. Experiments show that
our approach gives competitive results compared to state-of-
the-art unsupervised adaptation methods on standard domain
adaptation tasks. One unresolved problem is to integrate the
domain discrepancy in target risk upper bound into mutual
information framework. This problem is left for future work.
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