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Abstract

In real-world applications of natural language
generation, target sentences are often required
to satisfy some lexical constraints. However,
the success of most neural-based models re-
lies heavily on data, which is infeasible for
data-scarce new domains. In this work, we
present FewShotAmazon, the first benchmark
for the task of Constrained Text Generation
under few-shot settings on multiple domains.
Further, we propose the Switch-GPT model,
in which we utilize the strong language mod-
eling capacity of GPT-2 to generate fluent and
well-formulated sentences, while using a light
attention module to decide which constraint to
attend to at each step. Experiments on Few-
ShotAmazon dataset show that the proposed
Switch-GPT model is effective and remark-
ably outperforms the baselines.
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1 Introduction

Constrained text generation (CTG) is a vital re-
search problem for various applications, including
neural machine translation (Bahdanau et al., 2014;
Luong et al., 2015), task-oriented dialogues (Liu
et al., 2018; Budzianowski et al., 2018), and ab-
stractive text summarization (See et al., 2017).

Prior tasks can be classified into two categories:
(1)hard-constrained generation, where the inclu-
sion of certain keywords are mandatory in gener-
ated results; and, (2)soft-constrained generation,
where the generated sentence is only required to
be semantically related to a given sentence. While
Soft-constrained generation models are easier to de-
sign and tend to generate more coherent sentences,
missing keywords lead to the loss of pivotal facts.

Hard-constrained generation, however, involves
intricate design of network architectures. Previous
works broadly falls into two categories, sampling
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or searching-based methods (Berglund et al., 2015;
Hokamp and Liu, 2017; Miao et al., 2019; Sha,
2020) and insertion-based models (Zhang et al.,
2020). Hokamp and Liu (2017) incorporates con-
straints by performing Grid Beam Search in the
sentence space. However, searching based methods
have a high time complexity, as generating texts
involve a large sentence space. The Metropolis-
Hastings sampling framework (Miao et al., 2019)
models local transitions (e.g., deletion, insertion) to
achieve better fluency, but is slow in convergence.
Recently, fine-tuning on large-scale pre-trained lan-
guage models(e.g. BERT (Devlin et al., 2018) and
OpenAI GPT (Radford et al., 2018)) provide new
opportunities to CTG (Song et al., 2019; Chen et al.,
2019a; Ghazvininejad et al., 2019; Budzianowski
et al., 2018; Yang et al., 2020; Zhu et al., 2020).
Chen et al. (2019b) used a GPT model alongside
attention mechanism to tackle few-shot learning
on table-to-text. POINTER (Zhang et al., 2020)
incorporates pre-trained language models on an
insertion-based scheme and achieves state-of-the-
art (SOTA) results on both human and automatic
evaluation.

Although previous models generate reasonable
results, performance relies on large training datsets,
e.g., 5M training samples for CGMH, and 160K
fine-tuning samples for POINTER in a single do-
main. Such data-hungry nature makes it difficult
for models to be adopted into real-world scenarios,
especially on new domains where data is scarce.
This leads us to study this problem : Can we use
the prior knowledge from pre-trained models effi-
ciently, and learn to generate constrained text from
only a handful of samples?

This work proposes the task of few-shot CTG,
which aims to make the best of few training sam-
ples. We revisit the benchmarks for CTG, and
notices that current datasets are monotonous in
domains and lack suitable metrics. To simulate
few-shot learning on various domains, we have de-
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Figure 1: a) An illustration of Switch-GPT. hi,j is the hidden state of LSTM. ai is the attention of the ith constraint.
Ypred is the generation output of the GPT decoder. b) A comparison between soft attention and hard attention as
choice of constraint.

veloped a new benchmark FewShotAmazon. We
also propose a new metrics ∆BLEU to capture the
model’s ability to connect keywords smoothly. We
believe that the FewShotAmazon benchmark can
inspire future research to address CTG realistically.

To deal with the challenges of few-shot learning,
we develop the Switch-GPT model, which satisfies
the constraints in an autoregressive generative man-
ner, while controlling ‘copy’ and ‘generate’ actions
with a switch based on hard-attention. Experiments
show that our model surpasses prior works on the
FewShotAmazon benchmark. In short, the contri-
butions are summarized as the following:

• A new benchmark FewShotAmazon is intro-
duced to simulate the few-shot learning setting
on multiple domains.

• We propose a new model Switch-GPT and
creates a new SOTA on the FewShotAmazon
benchmark.

2 Task Formulation

The CTG task is formulated as follows: given sev-
eral disordered constraints X = {xi}ni=1, each
of which can either be a word or a phrase, the
target is to generate a fluent sentence of nature
language that contains all these constraints, e.g.,
Y = [y1, y2, ..., ym]. Furthermore, training is con-
ducted in few-shot settings, which means that the
provided training set D = {Xd, Yd}

|D|
d=1 contains

limited samples, i.e., |D| = 100.

3 Switch-GPT

The architecture of the framework of Switch-GPT
is depicted in Figure 1(a). The framework can be
divided into two components : a Switch module
to choose the constraint and to decide whether to
copy the constraint; and a GPT-2 language model
with an encoder to generate context embeddings
and a conditional decoder to generate sentences.

Switch with Attention Inspired by Grid Beam
Search (GBS) (Hokamp and Liu, 2017), we model
the generation by 3 policies, which are start copy-
ing, continue copying and generating. In our work,
these policies are applied as training objectives in-
stead of beam search algorithm.

At timestep t, given generated tokens
y1, ..., yt−1, the encoder of GPT returns the
representation st−1 for the generated context. The
model selects the constraint xk most important for
this context with an attention module, and then
decides whether to copy xk right now or generate
several tokens for transition.

We employ a LSTM encoder to learn represen-
tations of constraints with variable lengths. Each
constraint is represented by a hidden state hi cor-
responding to its last token. Then we obtained
weights of attention αt = {αi

t}ni=1 as in Bahdanau
et al. (2014) and modelled the chosen constraint as
the one with the largest attention.

αt
i =

exp(eti )∑n
k=1 exp(etk)

(1)

where
eti = a(st−1, hi) (2)

is an alignment model that scores the similarity



between the two vectors.

During training, the token selected at each
timestep is available by pairing the constraints and
the output, e.g., yt is copied from xk or generated
before next copy action of xk, then we set k as
the label of attention at this step. We trained the
attention module with cross entropy:

Lt
att = Cross_Entropy(αt, k) (3)

After selecting the next constraint, the result
of the attention module is set as the correspond-
ing hidden state of the chosen constraint ct = hk
instead of a weighted summation, ct =

∑
αihi.

In this way, the hard attention mechanism is im-
plemented such that it is different from the soft
attention approach of (Zhang et al., 2019). The
intuition is that the weighted summation can be
perceived as choosing a point within a convex
hull constructed by the candidate constraints, i.e.,
H(c) = {

∑n
j=1 αihi|

∑n
j=1 αi = 1, αi ≥ 0}.

Due to the sparsity of hidden space, the weighted
sum typically fails to represent meaningful con-
straint. Therefore, to guarantee choosing a mean-
ingful constraint, hard attention is used to enforce
the choice of a vertex rather than a point inside the
convex hull, as illustrated in Figure 1(b).

Then, following the approach of (See et al.,
2017), a switch pcopy is maintained to explicitly
decide whether to copy xk. Once decided to copy,
the output of generator is not used.

pcopy = sigmoid(Wcct + Wsst + Wiit + b) (4)

ot =

{
xk, pcopy > 0.5

arg max logits, else
(5)

where ot, it, st, logits are the final output, decoder
input, hidden state and the output of the generator
respectively. The switch pcopy is also trained with
cross entropy, supervised by the copy action copy
in target text :

Lt
copy = Cross_Entropy(ptcopy, copy) (6)

Conditional Generator We use the pre-trained
language model GPT-2 as the generator to pro-
duce p(yt|y1, ..., yt−1). In this task, we expect
the current step of generation could be a smooth
transition to select constraint xk. Therefore, we
need to model p(yt|y1, ..., yt − 1, xk). To condi-
tion the generated result on xk, we define s′t =
fMLP(st−1, xk), where a new context representa-
tion is generated via the fully connected layer, then
we feed s′t to the output layer to obtain the eventual

outputs. The overall loss function is as follows:

L =
m∑
t=1

α ∗ Lt
att + β ∗ Lt

copy + Lt
output (7)

where Lt
output is the cross entropy between the

outputs and the targets, while α, β are hyper-
parameters. The generator is fine-tuned from pre-
trained parameters, while the parameters of the
encoder (word embedding layer) are fixed. The
LSTM and the attention modules are learned from
scratch. During inference, the chosen constraints
are masked to avoid repetition. The generation pro-
cess does not end until all constraints are copied.

4 Proposed Benchmark:
FewShotAmazon

The benchmark is based on Amazon Product Re-
views (He and McAuley, 2016), which contains
reviews from 5 different domains: books, music,
movies, electronics and clothing. For each domain,
200 samples are selected for training, 1000 sam-
ples for validation, and 2000 samples for test. Pre-
processing is conducted as follows: sentences are
parsed using spaCy (Honnibal et al., 2020) and key-
words are extracted through keeping only the parent
nodes of the dependency structure. The keywords
include entities for the specific domain, which are
more similar to real-life scenarios and increase the
difficulty for models.

5 Experiments

5.1 Experimental Setup

Switch-GPT and other baselines are evaluated on
FewShotAmazon Benchmark. A general descrip-
tion of the experiment settings is shown below. De-
tails and generated samples can be found in the
appendices.

Model Implementation We adopt Byte Pair En-
coding (BPE) (Sennrich et al., 2015) to deal with
words out of vocabulary. The labels of attention
and copy are generated by matching inputs and
outputs during training. For pre-trained language
model, we use the open-source implementation
of the GPT architecture that provides GPT-2 fine-
tunable checkpoints with 124M parameters (Rad-
ford et al., 2019).

Baselines Since our model is based on switch
mechanism, the following models are selected as
baselines: Pointer (See et al., 2017), and its variant
Switch (Chen et al., 2019b) designed for few-shot
generation. These models are also fine-tuned on



Domain Books Clothing Music Movies Electronics
Cov ↑ BLEU↑ ∆B↑ Cov↑ BLEU↑ ∆B↑ Cov↑ BLEU↑ ∆B↑ Cov↑ BLEU↑ ∆B↑ Cov↑ BLEU↑ ∆B↑

Copy 100 8.38 - 100 8.57 - 100 8.67 - 100 8.78 - 100 8.85 -
Pointer 48.74 9.44 3.74 49.89 8.90 3.2 44.20 7.95 3.83 48.30 8.42 3.47 47.67 9.12 3.57
Switch 63.69 10.94 4.01 60.56 9.60 2.99 63.12 11.89 4.26 55.97 10.45 3.23 51.75 8.46 2.80

POINTER 92.02 8.68 3.64 91.92 7.47 2.90 91.86 8.29 3.43 91.54 8.72 3.57 92.18 8.00 3.25
Switch-GPT 100 24.15 4.85 100 22.25 4.68 100 23.76 4.72 100 22.73 4.79 100 23.71 3.75

Table 1: Results on different domains. Cov and ∆B are the abbreviations for Coverage and ∆BLEU score.

the same checkpoints of GPT-2. In addition, we
also compared with the SOTA model POINTER
(Zhang et al., 2020). To illustrate the influence of
the overlap between the inputs and outputs, we also
list the results of simply copying all constraints.

5.2 Main Results

We adopt both automatic and human evaluation
metrics to evaluate generation results, as shown in
Table 1 and Figure2.

Coverage The task aims to generate a fluent
sentence that contains all constraints. Coverage
score is used to show the percentage of constraint
tokens included in the generated results. From
the results of Pointer and Switch, we can observe
that it is difficult to train a model with soft copy
mechanism to satisfy all the constraints, which is
in line with the previous analysis. In contrast, our
model provides 100% coverage.

BLEU Score We evaluate BLEU-4 (Papineni
et al., 2002) score between generated samples and
golden example of the test set to measure the gener-
alization capability of the models. It is shown that
our model outperforms all baselines by a large mar-
gin on this metric. Also, the quality of generation
improves with the increase of samples, demonstrat-
ing steady generalization, as shown in Figure 2(a).
Moreover, the BLEU score of Switch-GPT trained
on 50 samples still outperforms the BLEU score of
Pointer trained on 20000 samples(average BLEU
= 10.74), which shows that Switch-GPT is very
effective under few-shot settings.

∆BLEU(Proposed) We introduce a new metric,
∆BLEU, to illustrate how well models provide tran-
sitions for constraints. It is calculated by subtract-
ing the BLEU score between generated sentences
and input constraints from the overall BLEU score.

∆BLEU = f(ygen, ygold)− f(ygen, c) (8)

where f, ygen, ygold, c stand for the BLEU Score,
the generated sentence, the golden reference and
the constraints. From results in Table 1, our model

connects constraints coherently.

(a) Few-shot learning

(b) Human evaluation

Figure 2: (a) The results of Switch-GPT with differ-
ent numbers of training samples. Pointer needs at least
100 times more training samples to generalize well. (b)
Comparison of ‘Naturalness’ and ‘Relevance’ of gener-
ated sentences. The first column depicts the scores for
golden references.

Human Evaluation We randomly extract 150
sentences on each domain and hire fifteen turk
workers to rate each of them according to its ‘Nat-
uralness’, and ‘Relevance’ on a scale from 1 to
5. ‘Naturalness’ indicates the semantic consistency
and the grammatical correctness of sentences, and
‘Relevance’ indicates the information relevance of
the generated sentence to the golden example. As
shown in Figure 2(b), our model provides match-
ing results on ‘Naturalness’, which is non-trivial
as incoporating 100% constraints harms fluency.
The performance of our model on ‘Relevance’ is
competitive among baselines.



6 Conclusion

In this paper, we propose the task of few-shot con-
strained text generation, which aims at making use
of the powerful pre-trained learning models and
obtain a constrained generator rapidly. Our method
based on autoregressive generation achieves this
goal with a hard switch policy, which also provides
a new direction for constrained text generation.
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